Create a Multi-Table Connector


To create your multi-table connector, we recommend that you first create a sample multi-table connector and edit the generated files. It’s easier to get all the files and directory structure your connector needs by just using an existing example.

To create your multi-table connector, do the following steps.

Step 1: Create a boilerplate multi-table connector

  1. Enter the following command to create the connector:

    taco create my-multitable-connector --boilerplate multi-table 
    

    This creates a directory with the earthquake data boilerplate code, which is included with the toolkit.

  2. Change directories to the my-multitable-connector directory.
    cd my-multitable-connector
    
  3. Build the connector by entering the following command:

    taco build
    

    This command clears any previous or existing build caches, then installs the dependencies, then builds the frontend code and the backend code (handlers), then copies the connector.json file (the configuration file).

Step 2: Configure your connector’s properties

In your new multi-table connector directory, find and open the connector.json file.

{
  "name": "my-multitable-connector",
  "version": "1.0.0",
  "tableau-version": {
    "min": "2022.3"
  },
  "vendor": {
    "name": "vendor-name",
    "support-link": "https://vendor-name.com",
    "email": "support@Salesforce.com"
  },
  "permission": {
    "api": {
      "https://*.usgs.gov/": [
        "GET",
        "POST",
        "HEAD"
      ]
    }
  },
  "auth": {
    "type": "none"
  },
  "window": {
    "height": 800,
    "width": 600
  }
}

Make the following changes:

  1. Change the general properties.

    Name Value
    name Your connector’s name
    version Your connector’s version
    min The earliest Tableau version your connector supports
  2. Change the company properties.

    Name Value
    vendor.name Your company name
    vendor.support-link Your company’s URL
    vendor.email Your company’s email
  3. Change the permissions.

    Name Value
    permission.api The URI for the API that the connector is allowed to access, along with the methods (POST, GET, PUT, PATCH, DELETE) that the connector is allowed to use.
  4. Change the authentication type.

    Name Value
    auth.type Accepted values are api-key, basic-auth, custom, none, and oauth2.

    For more information about authentication, see the Authentication section in the Considerations for Building Your Connector topic.

  5. Change the HTML pane size.

    Name Value
    window.height The height of the connector HTML pane
    window.width The width of the connector HTML pane

Step 3: Create the user interface

When you open a web data connector in Tableau, the connector displays an HTML page that links to your JavaScript code and to your connector’s handlers. Optionally, this page can also display a user interface for your users to select the data that they want to download.

To create a user interface for your connector, open the /app/index.html file.

<!DOCTYPE html>
<html>

<head>
  <title>USGS Earthquake Feed</title>
  <meta http-equiv="Cache-Control" content="no-store" />
  <link rel="shortcut icon" href="#" />
  <link href="index.css" rel="stylesheet" />
  <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/npm/toastify-js/src/toastify.min.css">
  <script src="index.js" type="module"></script>
</head>

<body style="background-color: white;">
  <p id="error" style="display: block; margin-top: 2em; height: 5px; text-align: center; color: red;"></p>
  <div class="box">
    <button type="button" id="submitButton" disabled>Please wait while settings
      load...</button>
  </div>
  </div>
</body>

</html>

Let’s run through what the code is doing. Skipping over the standard markup for an HTML page, notice the following between the head tags:

Between the body tags, there is a simple button element that illustrates how users can interact with your connector before getting data. In the next step, we’ll configure what happens when that button is clicked.

Step 4: Edit the connector object

Now that you’ve created a user interface, it’s time to edit the JavaScript code for the connector’s button. First, open the /app/index.js file.

import Connector from '@tableau/taco-toolkit'

function onInitialized() {
  const elem = document.getElementById('submitButton')
  elem.innerText = 'Get Earthquake Data!'
  elem.removeAttribute('disabled')
}

const connector = new Connector(onInitialized)

function submit() {
  const apiUrl = 'https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/4.5_week.geojson'

  connector.handlerInputs = [
    {
      fetcher: 'DataFetcher',
      parser: 'MagPlaceParser',
      data: {
        url: apiUrl,
      },
    },
    {
      fetcher: 'DataFetcher',
      parser: 'TimeUrlParser',
      data: {
        url: apiUrl,
      },
    },
  ]
  connector.submit()
}

window.addEventListener('load', function () {
  document.getElementById('submitButton').addEventListener('click', submit)
})

Some notes about the code:

Step 5: Update the fetcher file

If your data is complex and needs preprocessing, use the TACO Toolkit library to prepare your data. The following is the default code that the fetcher uses to get the data:

import { Fetcher, FetchUtils } from '@tableau/taco-toolkit/handlers'

export default class DataFetcher extends Fetcher {
  async *fetch({ handlerInput }) {
    yield await FetchUtils.fetchJson(handlerInput.data.url)
  }
}

Step 6: Configure how the data is presented

Now you must define how you want to map the data to one or more or tables. This mapping of data is done in the schema.

To decide how to map your data, look at your data source. When you’re done looking at the summary of the JSON data source, make the necessary edits to structure the returned data.

import { DataType, Parser } from '@tableau/taco-toolkit/handlers'

export default class MagPlaceParser extends Parser {
  parse(fetcherResult, { dataContainer }) {
    const tableName = 'Magnitude and Place Data'
    log(`parsing started for '${tableName}'`)

    const containerBuilder = Parser.createContainerBuilder(dataContainer)
    const { isNew, tableBuilder } = containerBuilder.getTable(tableName)

    if (isNew) {
      tableBuilder.addColumnHeaders([
        {
          id: 'id',
          dataType: DataType.String,
        },
        {
          id: 'mag',
          alias: 'magnitude',
          dataType: DataType.Float,
        },
        {
          id: 'title',
          alias: 'title',
          dataType: DataType.String,
        },
        {
          id: 'lat',
          alias: 'latitude',
          columnRole: 'dimension',
          dataType: DataType.Float,
        },
        {
          id: 'lon',
          alias: 'longitude',
          columnRole: 'dimension',
          dataType: DataType.Float,
        },
      ])
    }

    tableBuilder.addRows(
      fetcherResult.features.map((row) => {
        return {
          id: row.id,
          mag: row.properties.mag,
          title: row.properties.title,
          lon: row.geometry.coordinates[0],
          lat: row.geometry.coordinates[1],
        }
      })
    )

    return containerBuilder.getDataContainer()
  }
}
import { DataType, Parser } from '@tableau/taco-toolkit/handlers'

export default class TimeUrlParser extends Parser {
  parse(fetcherResult, { dataContainer }) {
    const tableName = 'Time and URL Data'
    log(`parsing started for '${tableName}'`)

    const containerBuilder = Parser.createContainerBuilder(dataContainer)
    const { isNew, tableBuilder } = containerBuilder.getTable(tableName)

    if (isNew) {
      tableBuilder.setId('timeUrl')
      tableBuilder.addColumnHeaders([
        {
          id: 'id',
          dataType: DataType.String,
        },
        {
          id: 'time',
          alias: 'time',
          dataType: DataType.Datetime,
        },
        {
          id: 'url',
          alias: 'url',
          dataType: DataType.String,
        },
      ])
    }

    tableBuilder.addRows(
      fetcherResult.features.map((row) => {
        return {
          id: row.id,
          url: row.properties.url,
          time: new Date(row.properties.time),
        }
      })
    )

    return containerBuilder.getDataContainer()
  }
}

Step 7: Build your connector

Enter these commands to build, pack, and run your new connector:

taco build
taco pack
taco run Desktop